Mixed Integrals and Related Inequalities

نویسنده

  • VITALI MILMAN
چکیده

In this paper we define an addition operation on the class of quasiconcave functions. While the new operation is similar to the well-known supconvolution, it has the property that it polarizes the Lebesgue integral. This allows us to define mixed integrals, which are the functional analogs of the classic mixed volumes. We extend various classic inequalities, such as the Brunn-Minkowski and the Alexandrov-Fenchel inequality, to the functional setting. For general quasiconcave functions, this is done by restating those results in the language of rearrangement inequalities. Restricting ourselves to log-concave functions, we prove generalizations of the Alexandrov inequalities in a more familiar form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

General Minkowski Type and Related Inequalities for Seminormed Fuzzy Integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

Width-integrals and Affine Surface Area of Convex Bodies

The main purposes of this paper are to establish some new Brunn– Minkowski inequalities for width-integrals of mixed projection bodies and affine surface area of mixed bodies, together with their inverse forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012